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Abstract

Regularization-based continual learning approaches generally prevent catastrophic
forgetting by augmenting the training loss with an auxiliary objective. However in
practical optimization scenarios with noisy data and/or gradients, it is possible that
stochastic gradient descent can inadvertently change critical parameters. In this
paper, we argue for the importance of regularizing optimization trajectories directly.
We derive a new co-natural gradient update rule for continual learning whereby
the new task gradients are preconditioned with the empirical Fisher information of
previously learnt tasks. We show that using the co-natural gradient systematically
reduces forgetting in continual learning. Moreover, it helps combat overfitting
when learning a new task in a low-resource scenario.

1 Introduction

Endowing machine learning models with the capability to learn a variety of tasks in a sequential
manner is critical to obtain agents that are both versatile and persistent. However, continual learning
of multiple tasks is hampered by catastrophic forgetting [31, 39], the tendency of previously acquired
knowledge to be overwritten when learning a new task.

Modern techniques to mitigate catastrophic forgetting can be roughly categorized into 3 lines of work
(see [35] for a comprehensive overview): 1. regularization-based approaches, where forgetting is
mitigated by the addition of a penalty term in the learning objective ([24, 8], inter alia), 2. dynamic
architectures approaches, which incrementally increase the model’s capacity to accomodate the new
tasks [41], and 3. memory-based approaches, which retain data from learned tasks for later reuse
[29, 9, 10]. Among these, regularization-based approaches are particularly appealing because they
do not increase the model size and do not require access to past data. This is particularly relevant to
real-world scenarios where keeping data from previous training tasks may be impractical because
of infrastructural or privacy-related reasons. Moreover, they are of independent intellectual interest
because of their biological inspiration rooted in the idea of synaptic consolidation [24].

In these regularization-based approaches, a good regularizer will ensure that, when learning a new
task, gradient descent will ultimately converge to parameters that yield good results on the new
task while preserving performance on previously learned tasks. Critically, this is predicated upon
successful optimization of the regularized objective, a fact that has been largely taken for granted
in previous work. Non-convexity of the loss function, along with noise in the data (due to small
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Figure 1: On the importance of trajectories: an example with 2-dimensional logistic regression.
Having learned task T1, the model is trained on T2 with two different objectives: minimizing the loss
on T2 (Finetuning) and a regularized objective (EWC; [24]). We add a small amount of Gaussian noise
to gradients in order to simulate the stochasticity of the trajectory. Plain finetuning and EWC often
converge to a solution with high loss for T1, but the co-natural optimization trajectory consistently
converges towards the optimum with lowest loss for T1.

or biased datasets) or in the gradients (due to stochastic gradient descent), can yield optimization
trajectories — and ultimately convergence points — that are highly non-deterministic, even for the
same starting parameters. As we demonstrate in this paper, this can cause unintended catastrophic
forgetting along the optimization path. This is illustrated in a toy setting in Figure 1: a two parameter
model is trained to perform task T2 (an arbitrary bi-modal loss function) after having learned task
T1 (a logistic regression task). Standard finetuning, even in the presence of a regularized objective
(EWC; [24]), quickly changes the loss of T1 and tends to converge to a solution with high T1 loss.

We propose to remedy this issue by regularizing not the objective function but the optimization
trajectory itself, specifically by preconditioning gradient descent with the empirical Fisher information
of previously learned tasks (§3). This yields what we refer to as a co-natural gradient, an update
rule inspired by the natural gradient [4], but taking the Fisher information of previous tasks as a
natural Riemannian metric1 of the parameter space, instead of the Fisher information of the task
being optimized for. When we introduce our proposed co-natural gradient for the toy example of
Figure 1, the learning trajectory follows a path that changes the loss on T1 much more slowly, and
tends to converges to the optimum that incurs the lowest performance degradation on T1.

We test the validity of our approach in a continual learning scenario (§4). We show that the co-natural
gradient consistently reduces forgetting in a variety of existing continual learning approaches by
a large factor, and greatly improves performance over simple finetuning, without modification to
the training objective. As an additional contribution, we assemble a new collection of 13 tasks for
evaluating continual learning on text classification.

We further investigate the special case of transfer learning in a two-task, low-resource scenario. In
this specific case, control over the optimization trajectory is particularly useful because the optimizer
has to rely on early stopping to prevent overfitting to the meager amount of training data in the target
task. We show that the co-natural gradient yields the best trade-offs between source and target domain
performance over a variety of hyper-parameters (§5).

2 Background and Notations

We first give a brief overview of the continual learning paradigm and existing approaches for
overcoming catastrophic forgetting.

2.1 Notation

Let us define a task as a triplet containing an input space X and an output space Y , both measurable
spaces, as well as a distribution D over X × Y . In general, learning a task will consist of training a
model to approximate the conditional distribution p(y | x) induced by D.

Consider a probabilistic model pθ parametrized by θ ∈ Rd where d is the size of the model, trained
to perform a source task S = 〈XS ,YS ,DS〉 to some level of performance, yielding parameters θS .

1Informally, the reader can think of a Riemannian metric as a function that assigns an inner product u, v 7→
gx(u, v) to each point x in the space, thus inducing a localized notion of distance and curvature.
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In the most simple instance of continual learning, we are tasked with learning a second target task
T = 〈XT ,YT ,DT 〉. In general in a multitask setting, it is not the case that the input or output spaces
are the same. The discrepancy between input/output space can be addressed in various ways, e.g.
by adding a minimal number of task-specific parameters (for example, different softmax layers for
different label sets). To simplify exposition, we set these more specific considerations aside for now,
and assume that XS = XT and YS = YT .

At any given point during training for task T , our objective will be to minimize the loss function
LT (θ) – generally the expected negative log-likelihood Ex,y∼DT [− log pθ(y | x)]. Typically, this will
be performed by iteratively adding incremental update vectors δ ∈ Rd to the parameters θ ←− θ + δ.

2.2 Existing Approaches for Continual Learning

In this paper, we focus on those models that have a fixed architecture over the course of continual
learning. The study of continual learning for models of fixed capacity can be split into two distinct
(but often overlapping) streams of work:

Regularization-based approaches introduce a penalty in the loss function LT , often quadratic,
pulling the weights θ back towards θS :

LT (θ) = EDT − log pθ(y | x)︸ ︷︷ ︸
NLL on task T

+λ(θ − θS)TΩS(θ − θS)︸ ︷︷ ︸
Regularization term

(1)

where ΩS is a matrix, generally diagonal, that encodes the respective importance of each parameter
with respect to task S, and λ is a regularization strength hyper-parameter. Various choices have
been proposed for ΩS ; the diagonal empirical Fisher information matrix [24], or path-integral based
importance measures [54, 8]. More elaborate regularizers have been proposed based on e.g. a
Bayesian formulation of continual learning [33, 1] or a distillation term [28, 16]. The main advantage
of these approaches is that they do not rely on having access to training data of previous tasks.

Memory-based approaches store data from previously seen tasks for re-use in continual learning,
either as a form of constraint, by e.g. ensuring that training on the new task doesn’t increase the loss
on previous tasks [29, 9], or for replay i.e. by retraining on instances from previous tasks [40, 10, 3, 2].
Various techniques have been proposed for the selection of samples to store in the memory [10, 3] or
for retrieval of the samples to be used for replay [2].

All of these methods rely on stochastic gradient descent to optimize their regularized objective or
to perform experience replay, with the notable exception of GEM [29, 9], where the gradients are
projected onto the orthogonal complement of previous task’s gradients. However, this method has
been shown to perform poorly in comparison with simple replay [10], and it still necessitates access
to data from previous tasks.

3 Regularizing the Trajectory

After briefly recalling derivation of the usual update in gradient descent, we derive a new, co-natural
update designed to better preserve the distribution induced by the model over previous tasks.

3.1 Warm up: the Standard Gradient Descent Update

At point θ in the parameter space, gradient descent finds the optimal update δ that is (1) small and (2)
locally minimizes the difference in loss L(θ + δ)− L(θ) (≈ δᵀ∇θL at the first order). Traditionally
this can be formulated as minimizing the Lagrangian:

L(δ) = δᵀ∇θLT︸ ︷︷ ︸
first order

loss minimization term

+ µ‖δ‖2︸ ︷︷ ︸
“small update” term

(2)

with Lagrangian multiplier µ > 0. Minimizing L for δ yields the well-known optimal update
δ∗ = − 1

2µ∇θLT , where 1
2µ corresponds to the learning rate (see Appendix A.1 for the full derivation).
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3.2 KL Regularization of Trajectories

The ‖δ‖2 term in L implicitly expresses the underlying assumption that the best measure of distance
between parameters θ and θ + δ is the Euclidean distance. In a continual learning setting however,
the quantity we are most interested in preserving is the probability distribution that θ models on the
source task S, pSθ (x, y) = pθ(y | x)pS(x)

Therefore, a more natural distance between θ and θ + δ is the Kullback-Leibler divergence
KL(pSθ ‖pSθ+δ) [25]. For preventing catastrophic forgetting along the optimization path, we in-
corporate incorporate this KL term into the Lagrangian L itself:

L(δ) = δᵀ∇θLT + µ‖δ‖2 + νKL(pSθ ‖pSθ+δ) (3)

Doing so means that the optimization trajectory will tend to follow the direction that changes the
distribution of the model the least. Notably, this is not a function of the previous objective LS , so
knowledge of the original training objective is not necessary during continual learning (which is
typically the case in path-integral based regularization methods [54] or experience replay [10]).

3.3 Co-natural Gradient Optimization

Presuming that δ is small, we can perform a second order Taylor approximation of the function
δ 7→ KL(pSθ ‖pSθ+δ) around 0. Considering that both the zeroeth and first order terms are null because
0 is a global minimizer of δ 7→ KL(pSθ ‖pSθ+δ), this reduces the Lagrangian to a quadratic optimization
problem (we refer the reader to [36] for a more detailed derivation):

L(δ) = δᵀ∇θLT + µ‖δ‖2 +
1

2
νδᵀFSθ δ (4)

where FSθ is the Hessian of the KL divergence around θ. A crucial, well-known property of this
matrix is that it coincides with the Fisher information matrix2 Ex,y∼pθ [(∇ log pSθ )(∇ log pSθ )T ] (the
expectation being taken over the model’s distribution pθ; see Appendix A.1 for details). This is
appealing from a computational perspective because the Fisher can be computed by means of first
order derivatives only.

Minimizing for δ yields the following optimal update:

δ∗ = −λ
[
FSθ + αI

]−1∇θLT (5)
where coefficients µ and ν are folded into two hyper-parameters: the learning rate λ and a damping
coefficient α (the step-by-step derivation can be found in Appendix A.1). In practice, especially with
low damping coefficients, it is common to obtain updates that are too large (typically when some
parameters have no effect on the KL divergence). To address this, we re-normalize δ∗ to have the
same∞ norm as the original gradient, ‖∇LT ‖∞. Moreover, to improve numerical stability in the
case of degenerate Fisher matrices, we add a very small damping term of 10−12 to the Fisher in all
experiments.

For computational reasons, we will make 3 key practical approximations to the Fisher:

1. FSθ ≈ FSθS : we maintain the Fisher computed at θS , instead of recomputing FS at every step
of training. This relieves us of the computational burden of updating the Fisher for every new
value of θ. This approximation (shared by previous work, e.g. [24];[8]) is only valid insofar as θS
and θ are close. While there is no theoretical ground for this approximation to hold beyond this
neighborhood, we observe empirically (in §4.3) that this still allows for reduced forgetting.

2. FS is diagonal: this is a common approximation in practice with two appealing properties. First,
this makes it realistic to store the d diagonal Fisher coefficients in memory. Second, this trivializes
the inverse operation (simply invert the diagonal elements).

3. Empirical Fisher: this common approximation replaces the expectation under the model’s distribu-
tion by the expected log-likelihood of the true distribution: Ex,y∼pS [(∇ log pSθ )(∇ log pSθ )T ] (mind
the subscript). This is particularly useful in tasks with a large or unbounded number of classes (e.g.
structured prediction), where summing over all possible outputs is intractable. We can then compute
the diagonal of the empirical Fisher using Monte Carlo sampling: 1

N

∑N
i=1[∇ log pSθ (yi | xi)]2

with (xi, yi) sampled from DS (we use N = 1000 for all experiments).
2Hence our use of the letter F to designate the Hessian
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This formulation bears many similarities with the natural gradient from [4], which also uses the KL
divergence as a metric for choosing the optimal update δ∗ in gradient descent. There is a however
a crucial difference, both in execution and purpose: where the natural gradient uses knowledge of
the curvature of the KL divergence of DT to speed-up convergence, our proposed method leverages
the curvature of the KL divergence on DS to slow-down divergence from pSθS . To highlight the
resemblance and complementarity between these two concepts, we refer to the new update as the
co-natural gradient.

3.4 Beyond Two Tasks

In a continual learning scenario, we are confronted with a large number of tasks T1 . . . Tn presented
in sequential order. When learning Tn, we can change the Lagrangian L from 3 to incorporate the
constraints for all previous tasks T1 . . . Tn−1:

L(δ) = δᵀ∇θLTn + µ‖δ‖2 +

n−1∑
i=1

νiKL(pTiθ ‖p
Ti
θ+δ) (6)

This in turn changes the Fisher in Eq. 6 to F̃n−1 := 1
2

∑n−1
i=1 νiF

Ti . The choice of the coefficients νi
is crucial. Setting all νi to the same value, i.e. assigning the same importance to all tasks is suboptimal
for a few reasons. First and foremost, it is unreasonable to expect of a model with finite capacity to
remember an unbounded number of tasks (as tasks “fill-up” the model capacity, F̃n−1 is likely to
become more “homogeneous”). Second, as training progresses and θ changes, our approximation
that FTiθ ≈ F

Ti
θTi

is less and less likely to hold.

We address this issue in the same fashion as [42], by keeping a rolling exponential average of the
Fisher matrices F̃ γn = γFTn + (1− γ)F̃ γn−1. In this case, previous tasks are gracefully forgotten at
an exponential rate controlled by γ. We account for the damping α term in Eq. 5 by setting F̃0 := α

γ I .
In preliminary experiments, we have found γ = 0.9 to yield consistently good results, and use this
value in all presented experiments.

4 Continual Learning Experiments

4.1 Experimental setting

To examine our hypothesis that controlling the optimization trajectory with the co-natural gradient
reduces catastrophic forgetting, we follow the experimental procedure from [10]: given a collection
of tasks, we create a “validation set” of 3 tasks used to select the best hyper-parameters, and keep
the remaining tasks for evaluation. This split is chosen at random and kept the same across all
experiments. In most settings, the nature and possibly the number of classes changes from task to task.
We account for this by training a separate “task head” for each task: an affine transform projecting
the features onto the number of classes, followed by a softmax layer. We apply continual learning
only to the remaining, “feature-extraction” part of the model.

We use the four following task suites in our experiments:

• Split CIFAR: The CIFAR100 dataset, split into 20 independent 5-way classification tasks. Simi-
larly to [9], we use a smaller version of the ResNet architecture [22]. We train on each task for 10
epochs with batch size 32.

• Omniglot: the Omniglot dataset [26] consists of 50 independent character recognition datasets
on different alphabet. We adopt the setting of [42] and consider each alphabet as a separate task.3
On this dataset we use the same small CNN architecture as [42]. We augment the training data by
randomly shifting and rotating images and train on each task for 2500 steps (120 to 417 epochs
depending on the alphabet) with batch size 32.

• Split MiniImageNet: The MiniImageNet dataset, a subset of the popular ImageNet [14] dataset4;
[46], is split into 20 independent 5-way classification tasks, similarly to Split CIFAR. We use the
same smaller ResNet and train on each task for 1500 steps with batch size 32 (≈ 20 epochs).

3Note that this is a different setting than the usual meta-learning scenario that Omniglot is used for.
4As MiniImageNet was developed as a meta-learning benchmark, its canonical train/test split consists of disjoint
classes. We perform a custom transversal split so that the dataset can be used as a 100-way classification task.

5



Table 1: Average final accuracies and forgetting, with and without the co-natural gradient. Results
are reported in percentages (± standard deviation over 5 re-runs). We indicate the best of standard/co-
natural in bold and denote statistical significance by underlining (p < 0.05).

(a) Split CIFAR 1.4 long

Finetuning EWC ER
Average accuracy ↑

Standard 33.41 ±1.48 58.97 ±0.95 62.47 ±0.65

Co-natural 63.94 ±1.78 61.41 ±0.82 68.08 ±0.87

Forgetting ↓
Standard 44.30 ±1.67 8.73 ±1.14 14.77 ±0.69

Co-natural 7.92 ±2.16 4.66 ±0.81 3.18 ±0.50

(b) Omniglot 1.4

Finetuning EWC ER
Average accuracy ↑

21.37 ±3.58 71.06 ±2.16 70.40 ±0.80

75.48 ±0.37 73.64 ±2.54 80.68 ±1.71

Forgetting ↓
71.04 ±3.47 10.47 ±2.37 22.04 ±0.86

3.04 ±1.16 2.76 ±0.72 1.70 ±0.30

(c) Split MiniImageNet 1.4 long

Finetuning EWC ER
Average accuracy ↑

Standard 35.50 ±3.47 63.42 ±0.48 65.47 ±0.88

Co-natural 65.82 ±3.22 65.25 ±2.35 71.16 ±0.59

Forgetting ↓
Standard 44.95 ±3.36 8.91 ±0.79 14.21 ±0.64

Co-natural 9.53 ±4.10 6.85 ±2.64 4.91 ±1.09

(d) Text Classification 1.4

Finetuning EWC ER
Average accuracy ↑

53.80 ±5.18 62.94 ±1.63 69.13 ±0.34

62.69 ±1.71 63.72 ±1.02 64.62 ±1.04

Forgetting ↓
18.27 ±5.27 1.68 ±0.97 3.11 ±0.51

0.82 ±0.42 0.30 ±0.12 0.70 ±0.51

• Text Classification: The most recent work on continual learning of language tasks [13] relies on a
relatively small set of tasks (5 classification tasks from [55]). This small number of tasks is not
amenable to our experimental setup described above, where 3 tasks are reserved for validation.
Therefore we assemble a larger collection of text classification datasets from three sources: the
GLUE benchmark [48], the SuperGLUE benchmark [47] and the text classification datasets used
in [13]. To keep things relatively simple, we only keep tasks that 1. are single sentence or sentence
pair classification tasks and 2. have more than 1000 training examples. The exact list of tasks can
be found in Appendix A.2. Instructions to download and code to preprocess the data will be made
available at anonymized_url to facilitate reproduction of our results and future work on continual
learning for text classification. Following recent practice in text classification, we use a large model
that has already been pre-trained in an unsupervised fashion (specifically bert-base-uncased5

from [15]), and fine-tune the model on the supervised classification tasks. We train on each task
for 1000 steps with batch size 16 (from 7 to < 1 epochs due to the large variance in dataset sizes).

We report results using two common metrics for continual learning: average accuracy, the accuracy
at the end of training averaged over all tasks, and forgetting. Forgetting is defined in [8] as the
difference in performance on a task between the current model and the best performing model on this
task. Formally if ATt represents the accuracy on task T at step t of training, the forgetting FTt at step
t is defined as FTt = maxτ<tA

T
τ −ATt . Low forgetting means that the model tend to keep the same

level of performance on a task it has previously learned.

We implement the proposed co-natural update rule on top of 3 baselines:

• Finetuning: Simply train the model on the task at hand, without any form of regularization.
• EWC: Proposed by [24], it is a simple but effective quadratic regularization approach. While

neither the most recent nor sophisticate regularization technique, it is a natural baseline for us to
compare to in that it also consists in a Fisher-based penalty — albeit in the loss function instead of
the optimization dynamics. We also use the rolling Fisher described in §3.4, making our EWC
baseline equivalent to the superior online EWC introduced by [42].

• ER: Experience replay with a fixed sized episodic memory proposed by [10]. While not directly
comparable to EWC in that it presupposes access to data from previous tasks, ER is a simple
approach that boasts the best performances on a variety of benchmarks [10]. In all experiments,
we use a memory of size 1,000 populated with reservoir sampling.

5We use the open-source implementation from [52] with the default configuration.
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Figure 2: Evolution of task performance over the course of continual learning on one ordering of
Omniglot. For visibility we only show accuracies for every fifth task. The rectangular shaded regions
delineate the period during which each task is being trained upon.

Training proceeds as follows: we perform exhaustive search on all possible hyper-parameter configu-
rations using the validation tasks. Every configuration is reran 5 times (3 for text classification) with
a different random seed and assigned a score based on the average task score at the end of training
(averaged over reruns). We then evaluate the best hyper-parameters by continual training on the
evaluation tasks. Results are reported over 5 random restarts, and we control for statistical significance
using a paired t-test (we pair together runs with the same task ordering). For all experiments we
train with plain stochastic gradient descent. We refer to Appendix A.3 for more details regarding
fine-grained design choices.

4.2 Results

The upper half of Tables 1a, 1b, 1c and 1d reports the average accuracy of all the tasks at the end
of training (higher is better). We observe that the co-natural gradient always improves greatly over
simple finetuning, and occasionally over EWC and ER. We note that simple co-natural finetuning
(without any other form of regularization) sometimes matches or exceeds the performance of EWC
even though it requires strictly fewer resources (there is no need to store the previous parameters as
in EWC, or data in ER).

Even more appreciable is the effect of the co-natural trajectories on forgetting, as shown in the lower
half of Table 1. As evidenced by the results in the lowest rows, using the co-natural gradient on top
of finetuning and ER consistently results in large drops in forgetting across all datasets. With EWC,
the conclusion is more nuanced. While the co-natural gradient systematically reduces forgetting, the
effect is not always statistically significant. Finally, we refer to Appendix A.4 for a detailed analysis
of the effect of the damping coefficient on forgetting.

To get a qualitative assessment of the learning trajectories that yield such results, we visualize the
accuracy curves of 10 out of the 47 evaluation tasks of Omniglot in Figure 2. We observe that
previous approaches do poorly at keeping stable levels of performance over a long period of time
(especially for tasks learned early in training), a problem that is largely alleviated by the co-natural
preconditioning. This seems to come at the cost of more intransigence [8], i.e. some of the later
tasks are not being learnt properly. In models of fixed capacity, there is a natural trade-off between
intransigence and forgetting (see also the “stability-plasticity” dilemma in neuroscience [19]). Our
results position the co-natural gradient as a strong low-forgetting/moderate intransigence basis for
future work.

4.3 On the Importance of Re-estimating the Fisher

In our experiments, we make a critical approximation by computing the Fisher information of each
task only once. Indeed, there is no theoretical reason for the Fisher to stay the same as the model
is fine-tuned, and by keeping a possibly stale Fisher we are losing the local geometric information
highlighted in Equation 3.

In order to examine how much this approximation hurts the co-natural gradient, we perform a series
of experiments on the split CIFAR dataset, specifically we only look at the performance of the first
task and compare three versions of co-natural fine-tuning: one where the Fisher is re-estimated
every epoch and one where the Fisher is computed only once (which is the version we use in our
experiments above). As evidenced by results in Table 2 (averaged over 10 reruns), while there is
a small (but statistically significant) decrease in performance by not re-computing the Fisher, we
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Table 2: Degradation in forgetting and accuracy when the Fisher is computed less frequently. All
improvements are statistically significant (p < 0.05).

Regular fine-tuning Computed once Re-computed every epoch
Final accuracy (↑) 21.88 ± 5.97 67.72 ± 7.17 71.82 ± 4.13

Forgetting (↓) 51.46 ± 6.48 7.84 ± 4.32 3.78 ± 2.10
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Figure 3: Low-resource adaptation results. Source and target task performance are represented on
the y and x axes respectively. Pareto optimal points for each method are highlighted and the frontier
is represented with dashed lines. Solid gray lines indicate the original source-task-trained model.

are still able to achieve ≈ 91% of the forgetting reduction over regular fine-tuning compared to
re-computing the Fisher every epoch, at a drastically lower computation cost (and without the need to
retain data to re-estimate the Fisher).

5 Low-Resource Adaptation Experiments

In this section we take a closer look at the specific case of adapting a model from a single task to
another, when we only have access to a minimal amount of data in the target task. In this case,
controlling the learning trajectory is particularly important because the model is being trained on an
unreliable sample of the true distribution of the target task, and we have to rely on early-stopping
to prevent overfitting. We show that using the co-natural gradient during adaptation helps both at
preserving source task performance and reach higher overall target task performance. We perform
experiments on two different scenarios:

Image classification We take MiniImagenet as a source task and CUB (a 200-way birds species
classification dataset; [50]) as a target task. To guarantee a strong base model despite the small size
of MiniImageNet, we start off from a ResNet18 model [22] pretrained on full ImageNet, which we
retrofit to MiniImageNet by replacing the last fully connected layer with a linear layer regressed over
the MiniImageNet training data. To simulate a low-resource setting, we sub-sample the CUB training
set to 2000 images (≈ 10 per class). Scores for these tasks are reported in terms of accuracy.

Machine translation We consider adaptation of an English to French model trained on WMT15 (a
dataset of parallel sentences crawled from parliamentary proceedings, news commentary and web
page crawls; [6]) to MTNT (a dataset of Reddit comments; [32]). Our model is a Transformer [45]
pretrained on WMT15. Similarly to CUB, we simulate a low-resource setting by sub-sampling 1000
sentence pairs as a training set. Scores are reported in terms of BLEU score [34].6

Here we do not allow any access to data in the source task when training on the target task. We
compare four methods Finetuning (our baseline), Co-natural finetuning, EWC (which has been
proven effective for domain adaptation [44]) and Co-natural EWC.

Given that different methods might lead to different trade-offs between source and target task perfor-
mance, with some variation depending on the hyper-parameters (e.g. learning rate, regularization

6We use sacrebleu [37] with -tok intl as recommended by [32].
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strength. . . ), we take inspiration from [44] and graphically report results for all hyper-parameter
configuration of each method on the 2 dimensional space defined by the score on source and target
tasks.7 Additionally, we highlight the Pareto frontier of each method i.e. the set of configurations that
are not strictly worse than any other configuration for the same model.

The adaptation results for both scenarios are reported in Figure 3. We find that in both cases, the
co-natural gradient not only helps preserving the source task performance, but to some extent it also
allows the model to reach better performance on the target task as well. We take this to corroborate our
starting hypothesis: while introducing a regularizer does help, controlling the optimization dynamics
actively helps counteract overfitting to the very small amount of training data, because the co-natural
pre-conditioning makes it harder for stochastic gradient descent to push the model towards directions
that would also hurt the source task.

6 Conclusion

We have presented the co-natural gradient, a technique that regularizes the optimization trajectory of
models trained in a continual setting. We have shown that the co-natural gradient stands on its own
as an efficient approach for overcoming catastrophic forgetting, and effectively complements and
stabilizes other existing techniques at a minimal cost. We believe that the co-natural gradient — and
more generally, trajectory regularization — can serve as a solid bedrock for building agents that learn
without forgetting.

Broader Impact

The work presented in this paper consists of an algorithmic improvement that inscribes itself in a
long line of work in preventing catastrophic forgetting in neural models (see Section 2.2 for a brief
overview of the relevant literature), and as such its impact inherits from that of this entire area of the
literature. In particular, reducing catastrophic forgetting makes it feasible to keep models over larger
periods of time without re-training from scratch, with potential computation and energy benefits.
More specifically, our work makes it possible to keep high levels of performance without retaining
training data on previous tasks or domains, which is attractive from the point of view of preserving
privacy (as it is not necessary to keep training data around after training). This advantage however
should be tempered by the possibility of extracting training data from trained models (as explored
in [7] for example): by preventing forgetting, it is unclear how much of the training data is in fact
preserved and recoverable in the model.
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A Appendix

A.1 Derivations

A.1.1 The Standard Gradient Update

We derive the standard gradient update by solving the Lagrangian L in Eq. 2 for δ. Given that its first
and second derivatives with respect to δ are:

∇L = ∇LT + 2µδ

∇2L = 2µI

the problem is trivially strictly convex and its global minimizer δ∗ satisfies:

∇L
∣∣
δ∗

= 0⇐⇒ δ∗ = − 1

2µ
∇LT

�

A.1.2 Equivalence of the Hessian of the KL Divergence and the Fisher Information Matrix

To simplify notation, let us perform the change of variables θ+δ → x. We show that the Hessian of the
KL coincides with the Fisher on θ: in other words,∇2KL(pθ‖px)

∣∣
x=θ

= Epθ [(∇ log pθ)(∇ log pθ)
ᵀ].

Under mild regularity assumptions8, we can write (all derivatives are taken with respect to variable
x):

∇2KL(pθ‖px) = ∇2Epθ [log pθ]︸ ︷︷ ︸
=0

−∇2Epθ [log px]

= −Epθ [∇2 log px]

Now note that ∇2 log px can be rewritten via standard derivatives manipulations as ∇
2px
px
−

(∇px)(∇px)ᵀ
p2x

. This leads to:

∇2KL(pθ‖px) = −Epθ
[
∇2px
px

]
+ Epθ

[(
∇px
px

)(
∇px
px

)ᵀ]
When taken at θ, the first term evaluates to9 :

Epθ
[
∇2px
px

]∣∣∣∣
x=θ

=

[∫
pθ(z)

∇2px(z)

px(z)
dz

]∣∣∣∣
x=θ

=

∫
pθ(z)

∇2pθ(z)

pθ(z)
dz

=

∫
∇2pθ(z)dz

= ∇2

∫
pθ(z)dz︸ ︷︷ ︸
=1

= 0

By using the identity ∇pxpx = ∇ log px and evaluating at x = θ, the second term gives us:

8Essentially allowing us to interchange derivatives and integrals.
9We abuse notation and write∇px

∣∣
x=θ

as∇pθ
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∇2KL(pθ‖px)
∣∣
x=θ

= Epθ [(∇ log pθ)(∇ log pθ)
ᵀ]

�

A.1.3 Obtaining the Co-natural Update (Equation 5)

We solve the Lagrangian from Eq. 4 in a similar fashion as in A.1.1. First we compute its gradient
and Hessian with respect to δ:

∇L = ∇LT + 2µδ + νFSθ δ

= ∇LT + (νFSθ + 2µI)δ

∇2L = (νFSθ + 2µI)

While not as straightforwardly as the one in A.1.1, this problem is also strongly convex: indeed FSθ
is positive semi-definite (as an expectation of PSD matrices) and the addition of µI ensures that∇2L
is positive definite. We find the unique solution by solving:

∇L
∣∣
δ∗

= 0⇐⇒ ∇LT + (νFSθ + 2µI)δ∗ = 0

⇐⇒ δ∗ = −[νFSθ + 2µI]−1∇LT

Set λ := 1
ν and α := µ

ν to get Eq. 5 �

A.2 Detailed Description of the Text Classification Task Suite

As mentioned in Section 4, we build a collection of text classification tasks by selecting sentence
or sentence pair classification tasks with training datasets of size greater than 1,000 samples from
three sources: GLUE [48], SuperGLUE [47] and the datasets used in [13] (originally used in [55]).
Specifically, we use the following tasks from each dataset (reported with the training data size):

• GLUE
– CoLA [49]: 8.6K
– MultiNLI [51]: 392.7K
– MRPC [17]: 3.7K
– QNLI [38]: 108.4K
– QQP [23]: 363.8K
– RTE [12, 21, 18, 5]: 2.5K
– SST-2 [43]: 67.3K

• SuperGLUE
– BoolQ [11]: 9.4K

• [13]
– AG News [20] (115.0K)
– Amazon Reviews Full [30] (115.0K)
– DBPedia [27] (115.0K)
– Yahoo Answers [55] (115.0K)
– Yelp Reviews Full [53] (115.0K)

Note that the RTE dataset from SuperGLUE also satisfies our task type and dataset size constraint,
however according to [47] it is an exact duplicate of GLUE’s RTE dataset, therefore we don’t include
it. [13] performed some mild preprocessing and subsampling of the datasets in [55], however they did
not release the final data. We perform a similar preprocessing step: for datasets where each sample
consists in several pieces of text (typically review title and body in the Amazon and Yelp datasets),
we concatenate all into one utterance, joined with a period and a space (“. ”). We subsample the
datasets to 115K training samples, 5K validation samples and 7.6K test samples.
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We randomly select three out of these 13 tasks to serve as the validation split upon which to perform
hyper-parameter search, namely: BoolQ, MRPC and SST-2.

Since test sets are not available for the GLUE and SuperGLUE benchmark, we compute the final
scores on the validation datasets. Note that in all our experiments, validation data is not used during
training, therefore there is no leakage of the ultimate evaluation dataset in the training procedure

A.3 Additional Experimental Settings for Continual Learning

This section is intended to facilitate the reproduction of our results. The full details can be found with
our code at anonymized_url.

A.3.1 Split CIFAR

We split the dataset into 20 disjoint sub-tasks with each 5 classes, 2500 training examples and 500
test examples. This split, performed at random, is kept the same across all experiments, only the
order of these tasks is changed. During continual training, we train the model for one epoch on each
task with batch size 10, following the setup in [9].

A.3.2 Omniglot

We consider each alphabet as a separate task, and split each task such that every character is present
12, 4 and 4 times in the training, validation and test set respectively (out of the 20 images for each
character). During continual training, we train for 2500 steps with batch size 32 (in keeping with
[42]). We ignore the validation data and simply evaluate on the test set at the end of training.

A.3.3 MiniImageNet

We split the dataset into 20 disjoint sub-tasks with each 5 classes. During continual training, we train
for 500 steps with batch size 32 (in keeping with [42]). We ignore the validation data and simply
evaluate on the test set at the end of training.

A.3.4 Grid-search parameters

For each all image-related tasks, we perform grid-search over the following parameter values:

• Learning rate (all methods): 0.1, 0.03, 0.01
• EWC regularization strength (EWC, Co-natural EWC): 0.5, 1, 5
• Fisher damping coefficient (Co-natural finetuning, Co-natural EWC, Co-natural ER): 0, 1, 0.1

For text classification with BERT specifically, preliminary experiments showed that all methods
benefitted from lower learning rate as well as lower regularization (likely due to the fact that
optimization is starting from a pretrained model). We therefore use the following values:

• Learning rate (all methods): 0.05, 0.01, 0.005
• EWC regularization strength (EWC, Co-natural EWC): 0.5, 0.1, 0.05
• Fisher damping coefficient (Co-natural finetuning, Co-natural EWC, Co-natural ER): 1, 10, 100

For ER, we simply set the replay batch size to the same value as standard training (10 and 32 for Split
CIFAR and Omniglot respectively). Note that whenever applicable, we re-normalize the diagonal
Fisher so that the sum of its weights is equal to the number of parameters in the model. This is so
that the hyper-parameter choice is less dependent on the size of the model. In particular this means
that the magnitude of each diagonal element is much bigger, which is why we do grid-search over
smaller regularization parameters for EWC than is common in the literature.

A.4 Sensitivity to damping

The main hyper-parameter for the co-natural gradient is the damping parameter α from Eq. 5. In
our previous experiments, the value of α is chosen according to grid search on a small number of
tasks. While this is a realistic setting for practical applications, in this section we perform a smaller,
targeted experiment to examine the effect of α on catastrophic forgetting.
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Figure 4: Effect of damping on forgetting and intransigence. The horizontal axis (measuring α)
follows a logarithmic scale. The width of the bands on each side of the curves represent the 95%
confidence intervals over the 10 re-runs.

We focus on the 17 evaluation tasks of the Split CIFAR dataset and set the learning rate to 0.1. We
observe how much the model “forgets” about the first task it has observed after training on all others.
Specifically, we train on the first task, compute its Fisher F1, and then proceed to train on the 16
remaining tasks with the co-natural gradient using F1 + α (in particular we do not regularize for the
other tasks). We observe how the value of alpha affects the final forgetting of the first task at the end
of training, as well as the model’s ability to learn new tasks (sometimes referred to as “intransigence”
in the literature [8]). As a measure of the latter, we report the maximum accuracy achieved by the
model averaged over the 16 remaining tasks.

We evaluate values of α from 10−7 to 102 (following a geometric progression), as well as the two
extremal values α = 0 (“pure” co-natural gradient10) and α =∞ (simple finetuning). All results are
averaged over 10 random restarts (with different model initialization and task order).

We observe in Figure 4a that forgetting monotonically increases with the damping coefficient. Simi-
larly, Figure 4b shows how increasing α results in lower intransigence. While these two observations
are expected, it is interesting to note the existence of a “sweet spot” around α ∈ [10−7, 10−4] where
damped co-natural gradient is significantly less intransigent than the un-damped co-natural gradient
while simultaneously not being significantly less robust to forgetting (all hypotheses are tested for
with p < 0.05).

10As mentioned in Section 3, we do actually add a small damping term ε = 10−12 to all experiments.
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